Intervention of Vowel Errors: A Case Study Using Multiple Oppositions

Marie Johnson, M.S., CCC-SLP¹, Andrea Jarrett, M.S., CF-SLP², and Lynn Williams, Ph.D., CCC-SLP ${ }^{1}$ ${ }^{1}$ East Tennessee State University $\quad{ }^{2}$ Wexler House for Functional Pathways

ABSTRACT

PROCEDURE
RESULTS
CLINICAL IMPLICATIONS

This case study describes a vowel intervention for a schooloutcomes were significant as measured by percentage of wels correct (PVC). Clinical implications are discussed with regard to identification of vowel error patterns and

 general principles of vowel intervention
INTRODUCTION

The incidence of vowel errors is high in the speech of children with CAS and children with moderate and sever phonological disorders (Flipsen, 2009). Studies have
reported that as many as 50% of children with these diagnoses have at least some vowel errors (Pollock \& Berni 2003). Vowel errors are significant because they are considered to be a potential diagnostic marker for CAS (Davis, Jakielski \& Marquardt, 1998). Further, vowel errors significantly impact speech intelligibility. Yet, the incidence
and significance of vowel errors are in stark contrast to the literature available about intervention approaches. Speechlanguage pathologists tend to focus primarily on identifying and treating consonant errors rather than vowels in working with children with speech sound disorders (SSD). In fact, a commonly held view by many speech-language pathologists
is that if you work on the consonants, the vowels will take care of themselves. There is available evidence, howeve that does not support this belief (Gibbon, 2009; Hall, Jordan, \& Robin, 1993). The purpose of this case study is to describe an intervention program that targeted vowels using a multiple oppositions approach.

PARTICIPANT

EB, age 7;0 at the beginning of intervention, was seen at a university clinic for individual 50 minute sessions once 2 , which placed her at the $11^{\text {th }}$ percentile for her chronological age
Analysis of EB's single word responses on the GFTA-2 revealed gliding of consonantal $/ r /$, vowelization of vocalic
$/ 3 /$ and rhotic vowels, as well as errors on the vowels $/ I$, e N . Specifically, for the nonrhotic vowels, EB collapsed them to the front mid lax vowel, $/ \varepsilon /$, as diagrammed below.

Based on this one-to-many correspondence in her vowel repertoire, a multiple oppositions approach was designed to induce a phonemic split for these three target vowels.

DISCLOSURE

Marie Johnson has no relevant financial or non-financial

 relationships to disclose.Andrea Jarrett has no relevant financial or non-financial relationships to disclose receives royalty payments.

A deneralization probe of 10 untrained words that contained each of the targeted vowels was administered prior to intervention as a baseline measure and then after every fourth intervention session.

For the multiple oppositions, five sets of contrastive word pairs for $/ \varepsilon / \sim / \mathrm{I}, \mathrm{e}, \Lambda /$ were developed. Examples of contrastive pairs include the following:

A treatment paradigm (Williams, 2000; Williams, 2003; Williams, 2010) was followe for implementing the multiple oppositions approach. The treatment phases are illustrated below followed by a brief description:

Phase 1 involves familiarization of the rule, sounds, and vocabulary of the treatment exemplars and lasts for one session
Phases 2 and 3 are data-based with specified criteria for matriculation from imitative to spontaneous response levels
o Phase 2: 70\% accuracy across two consecutive treatment sets and from focused practice with naturalistic "bridging" activities to production of the contrasts within communicative contexts
o Plase 3:
Phase 4 addresses production during conversational recast activities if the treatment criteria for Phase 3 is achieved, but the generalization criteria has not been achieved

Suggested dose frequency is a minic $f 60$. Suggested dose frequency is a minimum of 60 responses during naturalistic activities.

Due to travel distance, EB was only seen once weekly for 50 minute individual sessions. There were also frequent absences, which resulted in her completing a total of 25 intervention sessions over a 12 month period.
generalization criterion to discontinue intervention on /e/ after 12 sessions.

A comparison of EB's baseline and final probe performance indicated improvement on al three targeted vowels, as shown in the following graph
Generalization Probe Performance

Pre-Post GFTA-2 Performance

With regard to performance on the GFTA-2, only minimal change was observed from her pre-treatment test score. Specifically, EB's initial standard score was 91 with a percentil ricipaed to atandard score of 92 and 10 " percentle on he final GFTA-2.

Percentage Vowels Correct (PVC)
However, percentage of vowels correct (PVC; Shriberg, Austin, Lewis, McSweeny, \& Wilson, 1997) revealed a 129% increase in vowel accuracy from the initial to final GFTA- 2 administrations. EB's pre-treatment PVC was 54.88% compared to a PVC of 70.73% pos treatment. She continued to produce errors on rhotic vowels, which accounted for the illustrated below:

Clinical implications from this case study include
The need to assess vowel production in children
especially those with moderate to severe phonologica
disorders or CAS for vowel errors.
a. Requires whole-word transcription
b. Importance of incorporating a pattern analysis of Importance of incorporating a pattern analysis
vowel errors, such as phonological processes (i.e., lowering/raising, fronting/backing, tensing/laxing) or in terms of phoneme collapses
in identifying vowel error patterns and for in identifying vowel error patterns and for designing intervention
PVC, to determine vowel accuracy
d. Construct a vowel inventory

Construct a vowel inventory specific vowel assessment (Clinical Assessmen Watson, 2012)

2owel errors may benefit from a
linguistically-based intervention approach
a. Contrastive approaches, such as multiple
oppositions or minimal pairs
Available software program for vowel contrasts (e.g., SCIP)
good perceptual skills to analyze vowels

REFERENCES

Bates, S., \& Watson, J. Clinical As

English Systems (CAV-ES)
Davis, B., Jakielski, K., \& Marquardt, T. (1998), Developmental apraxia of speech: Determiners of differential diagnosis. Clinical Linguistics \&
Flipsen, P. (2009). Assessing and measuring severity of SSD. In C. Bowen (2009), Children's Speech Disorders (pp. 65-72). Oxford: Wiley-Blackwell.
Gibbon, F.E. (2009). Vowel errors in children with speech disorders. In C. Bowen (2009), Children's Speech
Hall, P.K., Jordan, L.S., \& Robin, D.A. (1993). Developmental Apraxia of Speech: Theory and Clinical Practice. Austin, TX: Pro-Ed.
Pollock, K.E., \& Berni, M.C. (2003). Incidence of non-rhotic vowel errors in children: Data from the Memphis 393-401.
Shriberg, L.D., Austin, D., Lewis, B.A., McSweeny, J.L., \& Wilson, D.L. (1997). The percentage of consonants correct (PCC) metric: extensions and reliability data Journal of Speech, La
Research. $40,708-722$.
Williams, A.L. (2010). Multiple oppositions intervention. In A. L. Williams, S. McLeod, \& R. J. McCauley (Eds.) nterventions for speech sound disorders in children (pp. 73-94). Baltimore, MD: Paul H. Brookes
williams,
preschool children . Clito disorders resource guide in Delmar Learning.

- Des, Leang. Mall
tams, A.L. (2000). Multiple oppositions: Theoretical foundations for an alternative contrastive intervention approach. American Journal of Speech

